Polarised Partition Relations for Order Types

Polarised Partition Relations for Order Types 03E02, 03E17, 05C63, 06A05

Thilo Weinert

Kurt Gödel Research Centre for Mathematical Logic, University of Vienna, Austria Joint work with Lukas Daniel Klausner

Winterschool in Abstract Analysis, Section Set Theory & Topology Wednesday, 30th Januar 2019, 9:00–9:35

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Order Types
- 2 The Polarised Partition Relation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Both Sources Countable
 - Some Observations
 - New Results
- 4 Cardinal Characteristics
- One Source CountableNew Results
- 6 Questions
 - References

We call an order type φ additively decomposable if there are types ψ and τ such that $\varphi = \psi + \tau$ but neither $\varphi \leq \psi$ nor $\varphi \leq \tau$. We call it *unionwise decomposable* if there is an ordered set $\langle X, \langle \rangle$ of type φ and a $Y \subseteq X$ such that neither $\varphi \leq otp(\langle Y, \langle \rangle)$ nor $\varphi \leq \operatorname{otp}(\langle X \setminus Y, \langle \rangle)$. We call it *multiplicatively decomposable* if there are types ψ and τ such that $\varphi = \psi \tau$ but neither $\varphi \leqslant \psi$ nor $\varphi \leq \tau$. We call it *typewise decomposable* if there is an ordered set $\langle X, <_X \rangle$ and for every $x \in X$ disjoint ordered sets $\langle Y_x, <_X \rangle$ such that the set $\langle \bigcup_{x \in X} Y_x, < \rangle$ has type φ if a < b is given by $\exists x \ (\exists y: a \in x \land b \in y \land x <_X y) \lor (a \in x \land b \in x \land a <_X b)$ and furthermore neither $\varphi \leq \operatorname{otp}(\langle X, <_X \rangle)$ nor $\varphi \leq \operatorname{otp}(\langle Y_X, <_X \rangle)$ for any $x \in X$.

An order type is called (additively, unionwise, multiplicatively, typewise) *indecomposable* if it fails to be (additively, unionwise, multiplicatively, typewise) decomposable.

Polarised Partition Relations for Order Types Order Types

Observation

An ordinal is

- ... additively/unionwise indecomposable if and only if it is of the form ω^{α} for an ordinal α ,
- ... multiplicatively indecomposable if and only if it is of the form $\omega^{\omega^{\alpha}}$ for an ordinal α ,

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

• ... typewise indecomposable if and only if it is regular.

Polarised Partition Relations for Order Types Order Types

Notation

 $\eta := \operatorname{otp}(\mathbb{Q}).$

Definition

An order-type φ is called *scattered* if $\eta \not\leq \varphi$.

Theorem ([Hausdorff, 1908, Satz XII])

The class of scattered order types is the smallest non-empty class containing all reversals and well-ordered sums.

Corollary

Up to equimorphism, the only countable typewise indecomposable order types are

Polarised Partition Relations for Order Types Order Types

Notation

 $\eta := \operatorname{otp}(\mathbb{Q}).$

Definition

An order-type φ is called *scattered* if $\eta \not\leq \varphi$.

Theorem ([Hausdorff, 1908, Satz XII])

The class of scattered order types is the smallest non-empty class containing all reversals and well-ordered sums.

Corollary

Up to equimorphism, the only countable typewise indecomposable order types are 0, 1, 2, ω , ω^* , and η .

Notation (Erdős and Rado [1956])

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \longrightarrow \begin{pmatrix} \gamma \varepsilon \\ \delta \zeta \end{pmatrix},$$

This relation states that for every colouring $\chi: A \times B \longrightarrow 2$ of a set A of size α and a set B of size β , either there is a $C \subseteq A$ of size γ and a $D \subseteq B$ of size δ such that $\chi[C \times D] = \{0\}$ or there is an $E \subseteq A$ of size ε and a $Z \subseteq D$ of size ζ such that $\chi[E \times Z] = \{1\}$.

・ロト ・四ト ・ヨト ・ヨー

Observation

If φ is a unionwise decomposable order type and ψ is any order type,

then
$$\begin{pmatrix} \psi \\ \varphi \end{pmatrix} \not\rightarrow \begin{pmatrix} 1 & 1 \\ \varphi & \varphi \end{pmatrix}$$

Observation

$$\begin{pmatrix} \eta \\ \eta \end{pmatrix} \not \to \begin{pmatrix} 1 & \aleph_0 \\ \aleph_0 & 1 \end{pmatrix}.$$

・ロト・西ト・山下・山下・ 日・ ひゃつ

Observation

For all natural numbers m, n and all unionwise indecomposable types φ ,

$$\begin{pmatrix} \varphi \\ mn+1 \end{pmatrix} \longrightarrow \begin{pmatrix} \varphi \\ n+1 \end{pmatrix}_{m}$$

Proposition (Klausner and W.)

If k, m and n are natural numbers, then

$$\begin{pmatrix} \omega^k \\ \omega^m \end{pmatrix} \longrightarrow \begin{pmatrix} \omega^k & n \\ \omega^m & n \end{pmatrix}.$$

This can be proved using Ramsey's Theorem, a technique which was first used in Haddad and Sabbagh [1969] for the ordinary partition relation.

Polarised Partition Relations for Order Types Both Sources Countable New Results

Lemma

For all order types ρ, τ, φ and $\psi, \rho \longrightarrow (2\tau, \varphi + \psi, \psi + \varphi)^2$ implies

$$\begin{pmatrix} \rho \\ \rho \end{pmatrix} \longrightarrow \begin{pmatrix} \tau \ \varphi \\ \tau \ \psi \end{pmatrix}.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem ([Erdős and Rado, 1956, Theorem 6])
$$\eta \longrightarrow (\eta, \aleph_0)^2.$$

Theorem (Larson [1973–1974])

For all natural numbers $n, \omega^{\omega} \longrightarrow (\omega^{\omega}, n)^2$.

Polarised Partition Relations for Order Types Both Sources Countable New Results

Proposition

For all natural numbers k,

$$\begin{pmatrix} \eta \\ \eta \end{pmatrix} \longrightarrow \begin{pmatrix} \eta & k \\ \eta & k \end{pmatrix}.$$

Proposition

For all natural numbers k,

$$\begin{pmatrix} \omega^{\omega} \\ \omega^{\omega} \end{pmatrix} \longrightarrow \begin{pmatrix} \omega^{\omega} & k \\ \omega^{\omega} & k \end{pmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

At this point we would like to recall the notion of *pinning*, cf. Galvin and Larson [1974/1975].

Definition

An order type φ can be *pinned* to an order type ψ (written as $\varphi \to \psi$) if for every ordered set F of type φ and P of type ψ there is a function (a so-called *pinning map*) $f : F \longrightarrow P$ such that every $f[X] \in [P]^{\psi}$ for every $X \in [F]^{\varphi}$.

Corollary

For all natural numbers k,

$$\begin{pmatrix} \eta \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \eta & k \\ \omega & k \end{pmatrix} \text{ and } \begin{pmatrix} \omega^{\omega} \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \omega^{\omega} & k \\ \omega & k \end{pmatrix}.$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

500

Lemma

For all natural numbers k and m and all order types φ and ψ and collections of order types $\langle \sigma_i | i < k \rangle$ and $\langle \tau_i | j < m \rangle$, if

$$\begin{pmatrix} \sigma_i \\ \tau_j \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_i \varphi \\ \tau_j \psi \end{pmatrix}$$

for all i < k and all j < m, then

$$\begin{pmatrix} \sum_{i < k} \sigma_i \\ \sum_{j < m} \tau_j \end{pmatrix} \longrightarrow \begin{pmatrix} \sum_{i < k} \sigma_i \varphi \\ \sum_{j < m} \tau_j \psi \end{pmatrix}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem

For all ordinals $\alpha, \beta < \omega^{\omega}$ and all natural numbers n,

$$\begin{pmatrix} \omega \alpha \\ \omega \beta \end{pmatrix} \longrightarrow \begin{pmatrix} \omega \alpha \ \mathbf{n} \\ \omega \beta \ \mathbf{n} \end{pmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (van Douwen [1984])

A *tower* is a sequence $\langle x_{\xi} | \xi < \alpha \rangle$ of infinite sets of natural numbers such that for $\gamma < \beta$, the set x_{γ} almost contains x_{β} . A tower is *extendible* if there is an infinite set almost contained in every member of it. The *tower number* t is the smallest ordinal α such that not all towers of length α are extendible.

Definition (van Douwen [1984])

An unbounded family is a family F of functions $g: \omega \longrightarrow \omega$ such that no single function $h: \omega \longrightarrow \omega$ eventually dominates all members of F. The unbounding number (sometimes called the bounding number) b is the smallest cardinality of an unbounded family.

Also recall that $cov(\mathcal{M})$ denotes the minimal number of meagre sets of reals necessary to cover the reals.

Definition (van Douwen [1984])

A splitting family is a family F of sets of natural numbers such that for every infinite set x of natural numbers, there is a member of Fsplitting x. The splitting number \mathfrak{s} is the smallest cardinality of a splitting family.

Definition

A countably splitting family is a family F of sets of natural numbers such that for every countable collection X of infinite sets of natural numbers, there is a member of F splitting every element of X. The countably splitting number \mathfrak{s}_{\aleph_0} is the smallest cardinality of a countably splitting family. Polarised Partition Relations for Order Types Cardinal Characteristics

Observation

 $\mathfrak{s} \leqslant \mathfrak{s}_{\aleph_0}.$

Proposition ([Kamburelis and Węglorz, 1996, Proposition 2.1])

 $\mathfrak{s}_{\aleph_0} \leqslant \max(\mathfrak{b},\mathfrak{s}).$

Proposition ([Kamburelis and Weglorz, 1996, Proposition 2.3])

$$\min(\operatorname{cov}(\mathcal{M}),\mathfrak{s}_{\aleph_0}) \leqslant \mathfrak{s}.$$

Question

Is $\mathfrak{s} < \mathfrak{s}_{\aleph_0}$ consistent?

Definition ([Brendle and Raghavan, 2014, Definition 31])

A tail-splitting sequence is a sequence $\langle a_{\alpha} \mid \alpha < \kappa \rangle$ of sets of natural numbers such that for every infinite set x of natural numbers there is an $\alpha < \kappa$ such that a_{β} splits x for all $\beta \in \kappa \setminus \alpha$. The tail splitting number \mathfrak{s}_{tail} is the shortest length of a tail-splitting sequence.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Theorem ([Brendle and Raghavan, 2014, Theorem 40])

 $\mathfrak{s} < \mathfrak{s}_{tail}$ is consistent.

Polarised Partition Relations for Order Types Cardinal Characteristics

・ロト ・ 同ト ・ ヨト ・ ヨト

э

990

Figure: The inequalities between the aforementioned cardinal characteristics known to be ZFC-provable.

Theorem (Erdős and Rado [1956])

$$\begin{pmatrix} \omega_1 \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \omega_1 \, \omega \\ \omega \, \omega \end{pmatrix}.$$

Theorem (Szemerédi, unpublished)

Martin's Axiom implies
$$\begin{pmatrix} \mathfrak{c} \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mathfrak{c} & \kappa \\ \omega & \omega \end{pmatrix}$$
 for all cardinals $\kappa < \mathfrak{c}$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ うへつ

Theorem (Jones [2008])

$$\binom{\kappa}{\omega} \longrightarrow \binom{\kappa \alpha}{\omega \omega} \text{ for any regular uncountable } \kappa \leqslant \mathfrak{c}$$

and all $\alpha < \min(\mathfrak{p}, \kappa)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Jones [2008])

$$\begin{pmatrix} \kappa \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \kappa \alpha \\ \omega \omega \end{pmatrix} \text{ for any regular uncountable } \kappa \leqslant \mathfrak{c}$$

and all $\alpha < \min(\mathfrak{p}, \kappa)$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem (Malliaris and Shelah [2013])

 $\mathfrak{p} = \mathfrak{t}.$

Proposition ([Garti and Shelah, 2012, Claim 1.4])

If
$$\aleph_1 < \mathfrak{s}$$
, then $\begin{pmatrix} \omega_1 \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \omega_1 \\ \omega \end{pmatrix}_2$.

Question ([Garti and Shelah, 2014, Question 1.7(a)])

Is it consistent that
$$\mathfrak{p} = \mathfrak{s}$$
 and $\begin{pmatrix} \mathfrak{p} \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mathfrak{p} \\ \omega \end{pmatrix}_2$?

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Observation (Brendle and Raghavan [2014])

The following are equivalent:

$$\begin{pmatrix} \lambda \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \lambda \\ \omega \end{pmatrix}_2$$
(1)
 cf(λ) $\neq \omega$ and $\lambda < \mathfrak{s}_{tail}$. (2)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Corollary ([Brendle and Raghavan, 2014, Corollary 45])

It is consistent that
$$\mathfrak{s} = \aleph_1$$
 while $\binom{\omega_1}{\omega} \longrightarrow \binom{\omega_1}{\omega}_2$.

Theorem (Klausner and W.)

$$\begin{pmatrix} \kappa \\ \eta \end{pmatrix} \longrightarrow \begin{pmatrix} \kappa \\ \eta \\ \eta \end{pmatrix}$$
 for any cardinal $\kappa \leq \mathfrak{c}$ of
uncountable cofinality and all $\alpha < \min(\mathfrak{t}, \mathrm{cf}(\kappa))$

Corollary

$$\begin{pmatrix} \kappa \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \kappa \\ \omega \\ \omega \end{pmatrix} \text{ for any cardinal } \kappa \leq \mathfrak{c} \text{ of}$$

uncountable cofinality and all $\alpha < \min(\mathfrak{t}, \mathfrak{cf}(\kappa)).$

・ロト ・四ト ・ヨト ・ヨト ・ヨー

990

Proposition (Klausner and W.)

If $\kappa < \mathfrak{b}$ is a cardinal of uncountable cofinality while n is a natural number and $\alpha \leqslant \kappa$, then

$$\binom{\kappa}{\omega^n} \longrightarrow \binom{\kappa}{\omega^n} \frac{\alpha}{\omega^n} if \text{ and only if } \binom{\kappa}{\omega} \longrightarrow \binom{\kappa}{\omega} \frac{\alpha}{\omega}$$

Corollary (Klausner and W.)

If κ is a regular uncountable cardinal smaller than \mathfrak{b} while $\beta \in \omega^{\omega} \setminus \omega$ is additively indecomposable and $\alpha < \min(\mathfrak{t}, \kappa)$, then

$$\binom{\kappa}{\beta} \longrightarrow \binom{\kappa \, \alpha}{\beta \, \beta}$$

Proposition ([Orr, 1995, Proposition 2])

Let A be a countable linearly ordered set and for every $a \in A$ let L_a be a finite linearly ordered set. Then there is an increasing map

$$\sigma \colon A \longrightarrow L = \sum_{a \in A} L_a$$

which maps onto all but finitely many points of L, and, in any event, onto at least one point in every L_a .

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Klausner and W.)

If α is an ordinal of cofinality \mathfrak{b} and φ is a countable typewise decomposable order type, then

$$\begin{pmatrix} \alpha \\ \varphi \end{pmatrix} \not \to \begin{pmatrix} \alpha \ 1 \\ \varphi \ \varphi \end{pmatrix}.$$

Corollary

Let φ be a countable order type. If φ is equimorphic to an order type in $\{0, 1, \omega^*, \omega, \eta\}$, then

$$\begin{pmatrix} \mathfrak{b} \\ \varphi \end{pmatrix} \longrightarrow \begin{pmatrix} \mathfrak{b} & \alpha \\ \varphi & \varphi \end{pmatrix} \text{ for all } \alpha < \mathfrak{t};$$
otherwise
$$\begin{pmatrix} \mathfrak{b} \\ \varphi \end{pmatrix} \not \longrightarrow \begin{pmatrix} \mathfrak{b} & 1 \\ \varphi & \varphi \end{pmatrix}.$$

Polarised Partition Relations for Order Types Questions

Question

Does the relation
$$\begin{pmatrix} \varphi \\ \psi \end{pmatrix} \longrightarrow \begin{pmatrix} \varphi & \mathsf{n} \\ \psi & \mathsf{n} \end{pmatrix}$$

hold for all countable unionwise indecomposable order types φ , ψ and all natural numbers n?

Question

Does the relation
$$\begin{pmatrix} \omega_1 \\ \varphi \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha & \alpha \\ \varphi & \varphi \end{pmatrix}$$

necessarily hold for all countable ordinals α and all countable unionwise indecomposable order types φ ?

Question

Is it consistent that
$$\begin{pmatrix} \omega_1 \\ \varphi \end{pmatrix} \longrightarrow \begin{pmatrix} \omega_1 \alpha \\ \varphi \varphi \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

for all countable ordinals α and all countable unionwise indecomposable order types φ ?

Question

Does the relation
$$\binom{\kappa}{\omega} \longrightarrow \binom{\kappa \alpha}{\omega \omega}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

hold for all cardinals $\kappa \leq \mathfrak{c}$ of uncountable cofinality and all $\alpha < \min(\mathfrak{s}_{\aleph_0}, \mathfrak{cf}(\kappa))$?

Polarised Partition Relations for Order Types Questions

Thank *u*₄ your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Polarised Partition Relations for Order Types Questions

References

- Jörg Brendle and Dilip Raghavan. Bounding, splitting, and almost disjointness. Ann. Pure Appl. Logic, 165(2):631–651, 2014. ISSN 0168-0072. doi:10.1016/j.apal.2013.09.002. URL http://dx.doi.org/10.1016/j.apal.2013.09.002.
- Paul Erdős and Richard Rado. A partition calculus in set theory. Bull. Amer. Math. Soc., 62:427-489, 1956. ISSN 0002-9904. URL http://www.ams.org/journals/bull/1956-62-05/S0002-9904-1956-10036-0/S0002-9904-1956-10036-0.pdf.
- Frederick William Galvin and Jean Ann Larson. Pinning countable ordinals. Fund. Math., 82:357–361, 1974/1975. ISSN 0016-2736. Collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday, VIII.
- Shimon Garti and Saharon Shelah. Combinatorial aspects of the splitting number. Ann. Comb., 16(4):709–717, 2012. ISSN 0218-0006. doi:10.1007/s00026-012-0154-5. URL http://dx.doi.org/10.1007/s00026-012-0154-5.
- Shimon Garti and Saharon Shelah. Partition calculus and cardinal invariants. J. Math. Soc. Japan, 66(2):425–434, 2014. ISSN 0025-5645. doi:10.2969/jmsj/06620425. URL http://dx.doi.org/10.2969/jmsj/06620425.
- Labib Haddad and Gabriel Sabbagh. Sur une extension des nombres de Ramsey aux ordinaux. C. R. Acad. Sci. Paris Sér. A-B, 268:A1165–A1167, 1969.
- Felix Hausdorff. Grundzüge einer Theorie der geordneten Mengen. Math. Ann., 65(4):435–505, 1908. ISSN 0025-5831. doi:10.1007/BF01451165. URL http://dx.doi.org/10.1007/BF01451165.
- Albin Lee Jones. Partitioning triples and partially ordered sets. Proc. Amer. Math. Soc., 136(5):1823–1830, 2008. ISSN 0002-9939. doi:10.1090/S0002-9939-07-09170-8. URL http://dx.doi.org/10.1090/S0002-9939-07-09170-8.
- Anastasis Kamburelis and Bogdan Zbigniew Węglorz. Splittings. Arch. Math. Logic, 35(4):263–277, 1996. ISSN 0933-5846. doi:10.1007/s001530050044. URL https://doi.org/10.1007/s001530050044.
- Lukas Daniel Klausner and Thilo Volker W.. The polarised partition relation for order types. Submitted. URL https://arxiv.org/abs/1810.13316.
- Jean Ann Larson. A short proof of a partition theorem for the ordinal ω^{ω} . Ann. Math. Logic, 6:129–145, 1973–1974. ISSN 0168-0072.
- Maryanthe Malliaris and Saharon Shelah. General topology meets model theory, on p and t. Proc. Natl. Acad. Sci. USA, 110 (33):13300–13305, 2013. ISSN 1091-6490. doi:10.1073/pnas.1306114110. URL https://doi.org/10.1073/pnas.1306114110.
- John Lindsay Orr. Shuffling of linear orders. Canad. Math. Bull., 38(2):223–229, 1995. ISSN 0008-4395. doi:10.4153/CMB-1995-032-1. URL https://doi.org/10.4153/CMB-1995-032-1.
- Eric Karel van Douwen. The integers and topology. In Handbook of set-theoretic topology, pages 111–167. North-Holland, Amsterdam, 1984.