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Polarised Partition Relations for Order Types

Order Types

We call an order type ϕ additively decomposable if there are types ψ
and τ such that ϕ = ψ + τ but neither ϕ 6 ψ nor ϕ 6 τ . We call it
unionwise decomposable if there is an ordered set 〈X , <〉 of type ϕ
and a Y ⊆ X such that neither ϕ 6 otp(〈Y , <〉) nor
ϕ 6 otp(〈X \ Y , <〉). We call it multiplicatively decomposable if
there are types ψ and τ such that ϕ = ψτ but neither ϕ 6 ψ nor
ϕ 6 τ . We call it typewise decomposable if there is an ordered set
〈X , <X 〉 and for every x ∈ X disjoint ordered sets 〈Yx , <x 〉 such that
the set 〈

⋃
x∈X Yx , <〉 has type ϕ if a < b is given by

∃ x (∃ y : a ∈ x ∧ b ∈ y ∧ x <X y) ∨ (a ∈ x ∧ b ∈ x ∧ a <x b) and
furthermore neither ϕ 6 otp(〈X , <X 〉) nor ϕ 6 otp(〈Yx , <x 〉) for
any x ∈ X .
An order type is called (additively, unionwise, multiplicatively,
typewise) indecomposable if it fails to be (additively, unionwise,
multiplicatively, typewise) decomposable.
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Order Types

Observation

An ordinal is

. . . additively/unionwise indecomposable if and only if it is of the
form ωα for an ordinal α,

. . . multiplicatively indecomposable if and only if it is of the form
ωω

α
for an ordinal α,

. . . typewise indecomposable if and only if it is regular.
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Order Types

Notation

η := otp(Q).

Definition

An order-type ϕ is called scattered if η 66 ϕ.

Theorem ([Hausdorff, 1908, Satz XII])

The class of scattered order types is the smallest non-empty class
containing all reversals and well-ordered sums.

Corollary

Up to equimorphism, the only countable typewise indecomposable
order types are

0, 1, 2, ω, ω∗, and η.
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The Polarised Partition Relation

Notation (Erdős and Rado [1956])

(
α

β

)
−→

(
γ ε
δ ζ

)
.

This relation states that for every colouring χ : A× B −→ 2 of a set
A of size α and a set B of size β, either there is a C ⊆ A of size γ
and a D ⊆ B of size δ such that χ

[
C × D

]
= {0} or there is an

E ⊆ A of size ε and a Z ⊆ D of size ζ such that χ
[
E × Z

]
= {1}.
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Both Sources Countable

Some Observations

Observation

If ϕ is a unionwise decomposable order type and ψ is any order type,

then

(
ψ

ϕ

)
6−→
(

1 1
ϕϕ

)
.

Observation (
η

η

)
6−→
(

1 ℵ0
ℵ0 1

)
.
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Both Sources Countable

New Results

Observation

For all natural numbers m, n and all unionwise indecomposable types
ϕ, (

ϕ

mn + 1

)
−→

(
ϕ

n + 1

)
m

.

Proposition (Klausner and W.)

If k , m and n are natural numbers, then(
ωk

ωm

)
−→

(
ωk n
ωm n

)
.

This can be proved using Ramsey’s Theorem, a technique which was
first used in Haddad and Sabbagh [1969] for the ordinary partition
relation.
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Both Sources Countable

New Results

Lemma

For all order types ρ, τ, ϕ and ψ, ρ −→ (2τ, ϕ + ψ, ψ + ϕ)2 implies(
ρ

ρ

)
−→

(
τ ϕ
τ ψ

)
.

Theorem ([Erdős and Rado, 1956, Theorem 6])

η −→ (η,ℵ0)2.

Theorem (Larson [1973–1974])

For all natural numbers n, ωω −→ (ωω, n)2.
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Both Sources Countable

New Results

Proposition

For all natural numbers k ,(
η

η

)
−→

(
η k
η k

)
.

Proposition

For all natural numbers k ,(
ωω

ωω

)
−→

(
ωω k
ωω k

)
.
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Both Sources Countable

New Results

At this point we would like to recall the notion of pinning, cf. Galvin
and Larson [1974/1975].

Definition

An order type ϕ can be pinned to an order type ψ (written as
ϕ→ ψ) if for every ordered set F of type ϕ and P of type ψ there is
a function (a so-called pinning map) f : F −→ P such that every
f
[
X
]
∈ [P]ψ for every X ∈ [F ]ϕ.

Corollary

For all natural numbers k ,(
η

ω

)
−→

(
η k
ω k

)
and

(
ωω

ω

)
−→

(
ωω k
ω k

)
.
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Both Sources Countable

New Results

Lemma

For all natural numbers k and m and all order types ϕ and ψ and
collections of order types 〈σi | i < k〉 and 〈τj | j < m〉, if(

σi
τj

)
−→

(
σi ϕ
τj ψ

)
for all i < k and all j < m, then(∑

i<k σi∑
j<m τj

)
−→

(∑
i<k σi ϕ∑
j<m τj ψ

)
.
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Both Sources Countable

New Results

Theorem

For all ordinals α, β < ωω and all natural numbers n,(
ωα

ωβ

)
−→

(
ωα n
ωβ n

)
.
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Cardinal Characteristics

Definition (van Douwen [1984])

A tower is a sequence 〈xξ | ξ < α〉 of infinite sets of natural numbers
such that for γ < β, the set xγ almost contains xβ . A tower is
extendible if there is an infinite set almost contained in every member
of it. The tower number t is the smallest ordinal α such that not all
towers of length α are extendible.

Definition (van Douwen [1984])

An unbounded family is a family F of functions g : ω −→ ω such
that no single function h : ω −→ ω eventually dominates all members
of F . The unbounding number (sometimes called the bounding
number) b is the smallest cardinality of an unbounded family.

Also recall that cov(M) denotes the minimal number of meagre sets
of reals necessary to cover the reals.
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Cardinal Characteristics

Definition (van Douwen [1984])

A splitting family is a family F of sets of natural numbers such that
for every infinite set x of natural numbers, there is a member of F
splitting x . The splitting number s is the smallest cardinality of a
splitting family.

Definition

A countably splitting family is a family F of sets of natural numbers
such that for every countable collection X of infinite sets of natural
numbers, there is a member of F splitting every element of X . The
countably splitting number sℵ0

is the smallest cardinality of a
countably splitting family.
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Cardinal Characteristics

Observation

s 6 sℵ0
.

Proposition ([Kamburelis and We↪glorz, 1996, Proposition 2.1])

sℵ0
6 max(b, s).

Proposition ([Kamburelis and We↪glorz, 1996, Proposition 2.3])

min(cov(M), sℵ0
) 6 s.

Question

Is s < sℵ0
consistent?
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Cardinal Characteristics

Definition ([Brendle and Raghavan, 2014, Definition 31])

A tail-splitting sequence is a sequence 〈aα | α < κ〉 of sets of natural
numbers such that for every infinite set x of natural numbers there is
an α < κ such that aβ splits x for all β ∈ κ \ α. The tail splitting
number stail is the shortest length of a tail-splitting sequence.

Theorem ([Brendle and Raghavan, 2014, Theorem 40])

s < stail is consistent.
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Cardinal Characteristics

c

d

max(b, s)

sℵ0

stail

b
s

cov(M)

min(cov(M), sℵ0)

t

ℵ1

Figure: The inequalities between the aforementioned cardinal
characteristics known to be zfc-provable.
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One Source Countable

Theorem (Erdős and Rado [1956])

(
ω1
ω

)
−→

(
ω1 ω
ω ω

)
.

Theorem (Szemerédi, unpublished)

Martin’s Axiom implies

(
c

ω

)
−→

(
c κ
ω ω

)
for all cardinals κ < c.
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One Source Countable

Theorem (Jones [2008])

(
κ

ω

)
−→

(
κ α
ω ω

)
for any regular uncountable κ 6 c

and all α < min(p, κ).

Theorem (Malliaris and Shelah [2013])

p = t.
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One Source Countable
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κ

ω

)
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(
κ α
ω ω
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One Source Countable

Proposition ([Garti and Shelah, 2012, Claim 1.4])

If ℵ1 < s, then

(
ω1
ω

)
−→

(
ω1
ω

)
2
.

Question ([Garti and Shelah, 2014, Question 1.7(a)])

Is it consistent that p = s and

(
p

ω

)
−→

(
p

ω

)
2
?
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One Source Countable

Observation (Brendle and Raghavan [2014])

The following are equivalent:(
λ

ω

)
−→

(
λ

ω

)
2

(1)

cf(λ) 6= ω and λ < stail . (2)

Corollary ([Brendle and Raghavan, 2014, Corollary 45])

It is consistent that s = ℵ1 while

(
ω1
ω

)
−→

(
ω1
ω

)
2
.
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One Source Countable

New Results

Theorem (Klausner and W.)

(
κ

η

)
−→

(
κ α
η η

)
for any cardinal κ 6 c of

uncountable cofinality and all α < min(t, cf(κ)).

Corollary

(
κ

ω

)
−→

(
κ α
ω ω

)
for any cardinal κ 6 c of

uncountable cofinality and all α < min(t, cf(κ)).
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One Source Countable

New Results

Proposition (Klausner and W.)

If κ < b is a cardinal of uncountable cofinality while n is a natural
number and α 6 κ, then(

κ

ωn

)
−→

(
κ α
ωn ωn

)
if and only if

(
κ

ω

)
−→

(
κ α
ω ω

)
.

Corollary (Klausner and W.)

If κ is a regular uncountable cardinal smaller than b while β ∈ ωω \ ω
is additively indecomposable and α < min(t, κ), then(

κ

β

)
−→

(
κ α
β β

)
.
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One Source Countable

New Results

Proposition ([Orr, 1995, Proposition 2])

Let A be a countable linearly ordered set and for every a ∈ A let La
be a finite linearly ordered set. Then there is an increasing map

σ : A −→ L =
∑
a∈A

La

which maps onto all but finitely many points of L, and, in any event,
onto at least one point in every La.



Polarised Partition Relations for Order Types

One Source Countable

New Results

Theorem (Klausner and W.)

If α is an ordinal of cofinality b and ϕ is a countable typewise
decomposable order type, then(

α

ϕ

)
6−→
(
α 1
ϕϕ

)
.

Corollary

Let ϕ be a countable order type. If ϕ is equimorphic to an order type
in {0, 1, ω∗, ω, η}, then (

b

ϕ

)
−→

(
b α
ϕϕ

)
for all α < t;

otherwise

(
b

ϕ

)
6−→
(
b 1
ϕϕ

)
.
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Questions

Question

Does the relation

(
ϕ

ψ

)
−→

(
ϕ n
ψ n

)
hold for all countable unionwise indecomposable order types ϕ, ψ and
all natural numbers n?

Question

Does the relation

(
ω1
ϕ

)
−→

(
α α
ϕϕ

)
necessarily hold for all countable ordinals α and all countable
unionwise indecomposable order types ϕ?
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Questions

Question

Is it consistent that

(
ω1
ϕ

)
−→

(
ω1 α
ϕ ϕ

)
for all countable ordinals α and all countable unionwise
indecomposable order types ϕ?
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Questions

Question

Does the relation

(
κ

ω

)
−→

(
κ α
ω ω

)
hold for all cardinals κ 6 c of uncountable cofinality and all
α < min(sℵ0

, cf(κ))?
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Questions

Thank u4 your attention!
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